In Motion Hand-in Assignment

Name: \qquad

1. The following graph shows the position of an object with respect to time. Positive values are North.

Describe the motion during the time intervals indicated.
(a) $0-2$ seconds
(b) 2-4 seconds
(c) $5-6$ seconds \qquad
(d) $8-10$ seconds \qquad
2. The following graph shows the velocity of an object with respect to time. Positive position is North.

Describe the motion during the time intervals indicated.
(a) $0-2$ seconds \qquad
(b) 2-4 seconds
(c) $6-8$ seconds
(d) $8-10$ seconds \qquad
3. Suzy travels 16 km in 0.5 hours. What is her average speed in m / s ?
4. One lap around a typical oval running track is 400 m . A particular race requires that people run around the track 3.75 times.
(a) What is the length of the race (distance)?
(b) What is the displacement of the runners?
5. A runner runs a race at a constant velocity of $2 \mathrm{~m} / \mathrm{s}$. During the last 20 seconds of the race, he constantly accelerates until he reaches a velocity of $5 \mathrm{~m} / \mathrm{s}$. Calculate his acceleration.
6. A car has an initial velocity of $2 \mathrm{~m} / \mathrm{s}$ and a final velocity of $-3 \mathrm{~m} / \mathrm{s}$. Describe how this is possible.
7. A car is slowing down while moving forward. Would this be considered positive or negative acceleration?
8. A car is traveling with a speed of $20 \mathrm{~m} / \mathrm{s}$. The driver sees and obstacle on the road and needs to stop.
(a) If the driver has a reaction time of 0.8 s , how far will the car travel during this reaction time?
(b) Calculate the braking distance for this driver on dry pavement $(\mathrm{k}=0.06)$.
(c) Calculate the total distance it takes for the car to stop.

